Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Immunol ; 44(1): 20, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38129739

ABSTRACT

While SARS-CoV-2 infection causes a mild disease in most children, SARS-CoV-2 infection may be lethal in a few of them. In the defense against SARS-CoV-2, type I interferons are key players, and several studies have identified a defective or neutralized interferon response as the cause of overwhelming viral infection. However, inappropriate, untimely, or excessive interferon production may also be detrimental to the host. Here, we describe two patients with STAT1 gain-of-function (GOF), a known type I interferonopathy, who died of COVID-19. Whole-exome sequencing and interferon-gamma-activated sequence (GAS) and interferon-sensitive responsive element (ISRE) reporter assay were performed to identify and characterize STAT1 variants. Patient 1 developed hemophagocytic lymphohistiocytosis (HLH) in the context of COVID-19 infection and died in less than a week at the age of 4 years. Patient 2 developed a high fever, cough, and hypoxemia and succumbed to COVID-19 pneumonia at the age of 5 years. Two heterozygous missense variants, p.E563Q and p.K344E, in STAT1 were identified. Functional validation by reporter assay and immunoblot confirmed that both variants are gain-of-function (GOF). GOF variants transiently expressing cells exhibited enhanced upregulation of downstream genes, including ISG15, MX1, and OAS1, in response to IFN-α stimulation. A catastrophic course with HLH or acute respiratory failure is thought to be associated with inappropriate immunoregulatory mechanisms to handle SARS-CoV-2 in STAT1 GOF. While most patients with inborn errors of immunity who developed COVID-19 seem to handle it well, these cases suggest that patients with STAT1-GOF might be at risk of developing fatal complications due to SARS-CoV-2.


Subject(s)
COVID-19 , Interferon Type I , Child , Child, Preschool , Humans , COVID-19/genetics , Gain of Function Mutation , Interferon-alpha/genetics , SARS-CoV-2/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
2.
J Allergy Clin Immunol Pract ; 11(4): 1261-1280.e8, 2023 04.
Article in English | MEDLINE | ID: mdl-36708766

ABSTRACT

BACKGROUND: Hereditary actin-related protein 2/3 complex subunit 1B deficiency is characterized clinically by ear, skin, and lung infections, bleeding, eczema, food allergy, asthma, skin vasculitis, colitis, arthritis, short stature, and lymphadenopathy. OBJECTIVE: We aimed to describe the clinical, laboratory, and genetic features of six patients from four Mexican families. METHODS: We performed exome sequencing in patients of four families with suspected actinopathy, collected their data from medical records, and reviewed the literature for reports of other patients with actin-related protein 2/3 complex subunit 1B deficiency. RESULTS: Six patients from four families were included. All had recurrent infections, mainly bacterial pneumonia, and cellulitis. A total of 67% had eczema whereas 50% had food allergies, failure to thrive, hepatomegaly, and bleeding. Eosinophilia was found in all; 84% had thrombocytopenia, 67% had abnormal-size platelets and anemia. Serum levels of IgG, IgA, and IgE were highly increased in most; IgM was normal or low. T cells were decreased in 67% of patients, whereas B and NK cells were increased in half of patients. Two of the four probands had compound heterozygous variants. One patient was successfully transplanted. We identified 28 other patients whose most prevalent features were eczema, recurrent infections, failure to thrive, bleeding, diarrhea, allergies, vasculitis, eosinophilia, platelet abnormalities, high IgE/IgA, low T cells, and high B cells. CONCLUSION: Actin-related protein 2/3 complex subunit 1B deficiency has a variable and heterogeneous clinical spectrum, expanded by these cases to include keloid scars and Epstein-Barr virus chronic hepatitis. A novel deletion in exon 8 was shared by three unrelated families and might be the result of a founder effect.


Subject(s)
Eczema , Eosinophilia , Epstein-Barr Virus Infections , Vasculitis , Humans , Actin-Related Protein 2 , Actins , Failure to Thrive , Herpesvirus 4, Human , Immunoglobulin A , Immunoglobulin E , Reinfection , Actin-Related Protein 3/metabolism
3.
Front Pediatr ; 9: 635322, 2021.
Article in English | MEDLINE | ID: mdl-34195158

ABSTRACT

Autosomal recessive (AR) DOCK8 deficiency is a well-known actinopathy, a combined primary immune deficiency with impaired actin polymerization that results in altered cell mobility and immune synapse. DOCK8-deficient patients present early in life with eczema, viral cutaneous infections, chronic mucocutaneous candidiasis, bacterial pneumonia, and abscesses, together with eosinophilia, thrombocytosis, lymphopenia, and variable dysgammaglobulinemia that usually includes Hyper-IgE. In fact, before its genetic etiology was known, patients were described as having a form of Hyper-IgE syndrome, a name now deprecated in favor of genetic defects. We describe a school-age male patient with a clinical picture suggestive of DOCK8 deficiency, except for high serum IgE or a family history: early onset, failure to thrive, eczema, warts, condyloma, bronchiolitis, pneumonia, recurrent otitis media, bronchiectasis, candidiasis, leukocytosis, eosinophilia, high IgA, low IgG, and low CD4+ T cells. We were able to confirm the diagnosis through protein expression and whole-exome sequencing. We review the clinical, laboratory, and genetic features of 200 DOCK8-deficient patients; at least 4 other patients have had no elevated IgE, and about 40% do not have Hyper-IgE (above 1,000 IU/mL). Despite this, the constellation of signs, symptoms, and findings allow the suspicion of DOCK8 deficiency and other actinopathies.

SELECTION OF CITATIONS
SEARCH DETAIL
...